npac_detector.machine_learning.load_model

Attributes

chemin

folder_path

file_paths

layer_nb

X_events

df_event

images

images

images

images

input_shape

latent_dim

image_input

image_input

model

reconstructed

reconstructed

im1

cbar1

im2

cbar2

Functions

event_hits_to_image(→ numpy.array)

Converts the hits of a dataframe into a 3D numpy array

Module Contents

npac_detector.machine_learning.load_model.chemin
npac_detector.machine_learning.load_model.folder_path = '/data/pion_1Gev_noShower/'
npac_detector.machine_learning.load_model.file_paths
npac_detector.machine_learning.load_model.layer_nb = 0
npac_detector.machine_learning.load_model.event_hits_to_image(df: pandas.DataFrame, n_layers=7, x_size=400, y_size=400) numpy.array

Converts the hits of a dataframe into a 3D numpy array

Parameters:
  • df – Input dataframe

  • n_layers (int) – Number of layers in the detector

  • x_size (int) – Number of pixels along x

  • y_size (int) – Number of pixel along y

Returns:

Array of dimension (n_layers,x_size,y_size) with take the energy as the value

npac_detector.machine_learning.load_model.X_events = []
npac_detector.machine_learning.load_model.df_event = None
npac_detector.machine_learning.load_model.images
npac_detector.machine_learning.load_model.images
npac_detector.machine_learning.load_model.images
npac_detector.machine_learning.load_model.images
npac_detector.machine_learning.load_model.input_shape
npac_detector.machine_learning.load_model.latent_dim = 32
npac_detector.machine_learning.load_model.image_input
npac_detector.machine_learning.load_model.image_input
npac_detector.machine_learning.load_model.model
npac_detector.machine_learning.load_model.reconstructed
npac_detector.machine_learning.load_model.reconstructed
npac_detector.machine_learning.load_model.im1
npac_detector.machine_learning.load_model.cbar1
npac_detector.machine_learning.load_model.im2
npac_detector.machine_learning.load_model.cbar2